
Syntax-Aware Model for Neural Machine Translation with Morpheme
Structure in Korean

Hyungrok Kim, Jubeen Lee, and Donghyun Kim

School of Computing, KAIST, Republic of Korea

{q0115643, ljb7977, internet}@kaist.ac.kr

Abstract

We propose hybrid models for neural machine

translation to incorporate syntactic structures

into neural translation models. We rely on two

recent structures incorporating linguistic prior

to machine translation, graph-convolutional

networks (GCNs), and NMT+RNNG, that

learns to parse and translate by combining

the recurrent neural network grammar into

the attention-based neural machine translation.

Here, we propose a hybrid models, that uses

both source side and target side linguistic pri-

ors into machine translation, and especially

when Korean is target-side language, we pro-

pose to use NMT+RNNG’s multitask learn-

ing structure and use in-process-generated tar-

get dependencies for piecing up Korean Mor-

pheme Based outputs into complete sentence

form to organically generate dependencies and

learn to have better target output sentences si-

multaneously, and expect over direct effect of

both sides’ linguistic priors. We looked for-

ward to observing improvements over tradi-

tional syntax-agnostic NMT models in all the

considered setups.

1 Introduction

Neural machine translation (NMT) has been mak-

ing successes with deep learning in natural lan-

guage processing. The recent NMT systems out-

performed traditional phrase-based approaches on

many language pairs without any prior linguistic

knowledge. But recently, some approaches were

coming up with incorporating linguistic priors into

the NMT models. We get motivation from two

approaches that exploits syntactic features into

NMT and combine those into 1 model and having

novel application in to morpheme-based structure

to suggest a new model for Korean translation.

There have been researches about analyz-

ing target-side Morpheme structures to feed

better learning in neural machine translation

(Dalvi et al., 2017). But there are none of other

approaches like the model, which is proposing the

best use of in-translate generated dependency by

multitask learning structure by applying that de-

pendency into composing morpheme outputs into

complete sentence and feed the whole model to get

better output sentence at simultaneously.

2 Related Work

Until last year, NMT systems relied on sequential

encoder-decoder model Sutskever et al. (2014);

Bahdanau et al. (2014). On the other hand, there

has been some recent approaches showing the po-

tential benefit of explicitly encoding the linguis-

tic prior into NMT. Sennrich and Haddow (2016)

proposed to augment each source word with its

corresponding part-of-speech tag.

Eriguchi et al. (2017) designed a hybrid decoder

for NMT, called NMT+RNNG, which combines a

usual conditional language model and a recently

proposed Recurrent Neural Network Grammars

(Dyer et al., 2016). Bastings et al. (2017) pre-

sented an effective approach to integrating syntax

into neural machine translation models. As we

provide descriptions later in section 3, they pro-

posed RNN(or CNN) + GCN structure in encoder

of NMT, to integrate syntactic information of the

input sequence into the base NMT model.

3 Approach

To make a new approach able to improve cur-

rent NMT models, we propose a hybrid model us-

ing both features from (Bastings et al., 2017) and

(Dyer et al., 2016) to provide both the encoder and

the decoder rich syntactic information and let them

decide which aspects of syntax are beneficial for

translation, without placing rigid constraints on

the interaction between syntax and the translation

task. To easily combine two different structrue,



we reconstructed final model implementation with

PyTorch framework.

3.1 Background

3.1.1 Attention based Encoder-to-Decoder

Neural Translation

The encoder reads a sequence of words x =
(x1, x2, . . . , xN ) of source sentence. Then the en-

coder returns a encoded sequence (hidden states)

h = (h1, h2, . . . , hN ). Each hidden state hi is a

concatenation of each directional encoder RNN’s

output: hi =
[−→
hi ;
←−
hi

]

where

−→
h i =

−→
f enc(

−→
h i−1, Vx(xi)),

←−
h i =

←−
f enc(

←−
h i−1, Vx(xi))

Vx(xi) refers to the embedding of the i-th source

word. The decoder generates each target word yj
by predicting the probability of yj given x.

p(yj = y|y<j , x) = softmax(W⊤
y s̃j)

s̃j = tanh(Wc [sj ; cj ])

sj = fdec(sj−1, [Vy(yj−1); s̃j−1])

where fdec is a LSTM unit and Wy is y’s output

word embedding.

cj is a context vector computed by the global at-

tention model using the hidden states of encoder

(Luong et al., 2015). It can be computed from

multiplicating alignment vector and encoder’s out-

put vectors. An alignment vector at is derived by

comparing the current target hidden state ht with

each source hidden state hs.

at(s) = align(ht , hs)

=
exp(score(ht, hs))

∑

s′ exp(score(ht, hs′))

(1)

By multiplicating this and hidden states of

encoder, the context vector cj can be derived:

cj =
∑

i ai,jhi.

3.1.2 Recurrent Neural Network Grammars

Recurrent neural network grammar (RNNG) is a

trasition-based parser having buffer, stack and ac-

tion sequence, which are implemented as a Stack

LSTM to model the parser state and preserve com-

plete history of parser.

At each step, the action sLSTM predicts next

action based on hidden states of buffer and stack.

p(at = a|a<t) ∝ eW
⊤
a faction(h

buffer
t ,hstack

t ,haction
t ))

And each hidden states of stackLSTMs can be up-

dated by following:

h
buffer
t = stackLSTM(hbuffer

top ,Vy(yt−1 ))

hstackt = stackLSTM(hstack
top , rt)

hactiont = stackLSTM(haction
top ,Va(at−1 )))

where Vy and Va are functions returning the target

word and action vectors. The input vector rt of the

stack sLSTM is computed by

rt = tanhWr [r
d ; rp ;Va(at)]]

where rd is parent phrase vector and rp is depen-

dent phrase vector. (Dyer et al., 2015)

3.1.3 NMT+RNNG

NMT+RNNG(Eriguchi et al., 2017) learns to both

parse and translate by combining the recur-

rent neural network grammar (RNNG) into the

attention-based neural machine translation model.

They replaced the buffer of RNNG (h
buffer
t ) to

hidden state of original decoder (sj) so it can si-

multaneously summarize the shifted words as well

as generates future words.

NMT+RNNG models the conditional distri-

bution over all possible pairs of translation

and its parse given a source sentence (i.e.

p(y, a|x)). Assuming the availability of parse

annotation in the target-side of a parallel cor-

pus, train the whole model jointly to maximize

E(x,y,a)∼data[log p(y,a|x)].

3.1.4 Syntactic Graph Convolutional

Network

The GCNs(Bastings et al., 2017) use syntactic de-

pendency trees of source sentences to produce rep-

resentations of words that are sensitive to their

syntactic neighborhoods.

Different weight matrices should be applied ac-

cording to the direction of edge (incoming or out-

going). Now, the recursive computation of original

GCN could be revised as following:

h
j+1
v = ρ





∑

u∈N(v)

W
j

dir(u,v)h
j
u + b

j

dir(u,v)







h
j+1
v = ρ





∑

u∈N(v)

W
j

lab(u,v)h
j
u + b

j

lab(u,v)





The different weight matrices were used according

to combination of label and direction. To prevent

over-parameterization, they used the same weight

matrix W regardless of label but only regard to di-

rection. Instead, they gave difference on bias vec-

tor with regard to label.

Syntactic GCNs have gates to control noise by

ignoring erroneous edges. For that, a scalar gate

value can be calculated as following:

gju,v = σ(hj
u · ŵ

j

dir(u,v) + b̂
j

lab(u,v)))

Two parameters are learned.

ŵ
j

dir(u,v) ∈ Rd, b̂
j

lab(u,v) ∈ R

Finally, hidden states can be computed as:

h
j+1
v = ρ





∑

u∈N(v)

gju,v(W
j

dir(u,v)h
j
u + b

j

dir(u,v))





3.2 Our Approach

Encoder

Embed

Softmax

RNNG

Decoder

GCNs

s

GCNs
Null

Source Sentence

SyntaxNet

Dependency

Dependency

GCNs

Decoder Encoder ?

Figure 1: Complete model with GCN encoder + RNNG

decoder + externel encoder-decoder fed by RNNG out-

puts to build complete sentence.

1 shows our proposal in detailed Architecture.

Instead of building whole structure and proceeding

desired experiments, we made 2 different model to

test on.

Model 1. GCN Encoder-to-RNNG Decoder

which is for analyzing the translation with incor-

porating both source and target side syntactic de-

pendencies.

Model 2. NMT+RNNG-to-Morpheme Com-

position GCN Encoder (same as the figure with-

out the GCNs at source-side), to analyze on in-

process parsed dependency usage into target-side

Morphemes Composition.

If that morpheme composition was just for find-

ing correct compositions for some morphemes, it

wouldn’t need too complex structure. But here,

because we are in phase of Neural Machine Trans-

lation, and the output morphemes from RNNG de-

coder might not be correctly predicted.

That is why we expect more from that mor-

pheme composition, because it is trained with

the whole model, last GCN and Encoder-Decoder

should not act like accurate morpheme com-

poser, those should be trained as influencing

the whole process. In some degree, similar to

how NMT+RNNG (Eriguchi et al., 2017) learns to

parse and to translate simultaneously with depen-

dency parsed data as linguistic priors.

4 Experiments

4.1 Syntactic Parser

Before incorporating En-Kr parallel corpus into

our models, we had to feed the corpus to syntactic

parser to get parsed data in tokenized, CONLL-

formatted text.

Figure 2: SyntaxNet Architecture

SyntaxNet1 A TensorFlow based framework

that provides a foundation for Natural Language

Understanding systems. By SyntaxNet trained

with treebank corpus, we can do POS-tagging an

Transition-based dependency parsing to appropri-

ate language sentences. For tokenizing and pars-

ing English sentences, we trained it with the stan-

dard corpora of the Penn Treebank2. But for

Korean sentences, we needed to get a different

corpus since UD-Korean corpus was based on

1
https://opensource.google.com/projects/syntaxnet

2
https://catalog.ldc.upenn.edu/LDC99T42

https://opensource.google.com/projects/syntaxnet
https://catalog.ldc.upenn.edu/LDC99T42


the word unit and not the morpheme units, so

we trained the parser with Sejong Treebank Cor-

pus by Korean Language Institute. Which has

dependencies based on morpheme units. Also,

to apply our Morpheme-based Korean SyntaxNet

on our Korean corpus for translation, we used

KoNLPy (Park and Cho, 2014) to tokenize Korean

sentences based on morpheme units.

4.2 Corpora

Train. Dev. Test. Voc. (kr, en, act)

En ↔ Kr 99,999 10,000 10,000 (25,869, 27,732, 81)

Table 1: Statistics of parallel corpora.

We compare the two proposed GCN+RNNG

models against the baseline model, NMT+RNNG

on two different language pairs Kr-En, En-Kr. The

basic statistics of the training data are presented in

Table 1. We mapped all the low-frequency words

to the unique symbol UNK and inserted a special

symbol EOS at the end of both source and target

sentences.

En-Kr We used English-Korean parallel cor-

pus3 which was collected from the Web by

(Kim et al., 2010) This corpus has about 410,000

sentences, but we excluded sentences with rare

special characters(e.g. *, #, {, ...) and pairs those

have length longer than 80 characters, extracted

99,999 sentences for train data, 10,000 for both

tuning data and test data. We mapped all the low-

frequency tokens to the unique symbol UNK, built

our vocabulary with tokens with more than 3 ap-

pearances and inserted a special symbol EOS at

the end of both source and target sentences.

Figure 3: Arc-Standard Transition Overview

Nivre’s Arc-Standard Transition To feed

the parsed dependencies to RNNG structures,

we needed to build our algorithm extract-

ing transition-actions based on Nivre’s Arc-

3The dataset and the parallel corpus are available on the
authors website,

http://isoft.postech.ac.kr/˜megaup/research/resources/

standard Transition rules, from SyntaxNet’s

output(CONLL-format.)

4.3 Model 1: GCN-to-RNNG on Kr-En

GCN-RNNG Our first trial was experiments

with GCN-to-RNNG model, which has source

sentence→ GCN-encoder → RNNG-decoder →
target sentence structure

In all our experiments, since we had very large

size of vocabularies, we wanted to increase the to-

ken embedding dimensions to capture those differ-

ences on tokens, but due to computational power,

we had to lower it to 128, in the word vectors and

the action vectors were of 128 and 32 dimensions

respectively. Action vectors and action LSTMs

were with small dimension since it didn’t have

many variations. Each recurrent network has a

single layer of LSTM units of 128 hidden dimen-

sions, only the LSTM for action embeddings have

16 hidden dimension. All LSTMs’ hidden states

and weights were initialized with zero, and forget

biases were initially set to 0.01. In GCNs, weight

matrices were initialized with Xavier Weight Ini-

tialization with gain 1. All biases were initialized

with zero. Weights for gates were initialized with

uniform distribution between 0 and 0.01.

Our mini-batch size was 256, loss function was

computed by negative log likelihood loss, for op-

timizer we used RMSprop. The learning rate was

set to 0.01 and epochs were set to 30.

When every epoch ends, we computed BLEU1

score with the develop data and saved model in

every high-score by that. In LSTMs acting as a

decoder, generating target words or transition ac-

tions, we made it not to choose *unknown* (saved

when loading corpus.)

4.4 Model 2: NMT+RNNG-to-GCN on

En-Kr

NMT+RNNG-to-GCN With this model, basi-

cally all hyper-parameters were set same as in

Model 1. To feed the dependencies made from

RNNG, to the GCNs behind RNNG, we needed to

convert the transition actions to dependency tree

structure, but just by using actions from action-

decoder, it was not suitable to make a tree in most

of the times, so we constrained in decoder, to gen-

erate SHIFT or REDUCE less than target words,

and rejected every unsuitable action sequences.

http://isoft.postech.ac.kr/~megaup/research/resources/


Figure 4: example outputs from our experiment, first

one is from Model 1, and second one is from Model 2,

and an example BLEU1 score that was computed.

5 Conclusion and Future Work

Even with the enormous efforts on complete

construction of our complex model (especially

RNNG), from 4 we can clearly see our experiment

didn’t give us any good results. According to our

analysis, we were able to bring up corresponding

reasons.

5.1 Problem 1: Very Large Vocabularies

We had 25,869 different tokens from Korean,

27,732 for English. Currently we used a random

initialized weight matrix to build our token em-

beddings, making the matrix into trainable param-

eter in our overall training, and that is fragile to

deal with rare words and phenomena such as in-

flection and compounding.

There are clear improvements we can make,

Learning Byte-Pair Encodings (BPE) as de-

scribed by Sennrich et al.. We expect in our result,

this can solve phenomenons that output tokens are

converging to few tokens.

5.2 Problem 2: Gap between Dependency

Tree and Transition Action Sequence

This was actually the main reason we had experi-

ments with 2 models. We were not confident in ad-

justing Action Decoder in RNNG to get sequences

that are always able to convert into Dependency

Tree. Like we decribed, we have done it with sim-

ple algorithm, but we expect it is disturbing the

models quality.

There can be solutions, designing better loss

function for this action decoding since reject-

ing the output and looping is not common phe-

nomenons. And building better algorithm for con-

straining the action decoder to only generate se-

quences that can be converted into Dependency

Tree.

5.3 Problem 3: Lack of Computational

Power and Incomplete Baseline Model

Our baseline model was actually two,

NMT+RNNG(Eriguchi et al., 2017) and NMT

with GCN encoder(Bastings et al., 2017). We

knew it would be a very complex model, es-

pecially for RNNG. As we started working in

earnest, we found out that RNNG code4 was not

built properly. it took much time in building

the whole model from scratch, this eventually

became the biggest reason for other problems

we still have. And for GCN and other NMT

papers, we can see that those authors have done

the experiments with huge corpus(4,500,966 train

sentences by Bastings et al..) It was not possible

for us to come up with trained performances that

can be compared with base papers.

5.4 Problem 4: Too Complex Neural Net

Structure

Even though we had computational problems, ac-

tually our model was over-parameterized if we

look inside the NMT+RNNG model and extra

encoder-decoder with GCN.

5.5 Problem 5: Inappropriate Corpus for

Translation

For our translation task, we used web-collected

corpus by Kim et al.. But it was not developed

for translation, it was developed for Relation De-

tection with Cross-lingual Approach. If we look

through the corpus we can see too many abnormal

sentences like technical manuals for complex ma-

chines(those have too many special characters.)

5.6 Conclusion

We faced many problems, but we believe our idea

of using NMT+RNNG’s dependency output with

extra GCN encoder of Morpheme composer has a

great worth to tryout.

We expect, with applying subword-unit encod-

ing (Sennrich and Haddow, 2016) and those possi-

ble solutions, we have quite a possibility of prov-

ing the performance of our novel idea. We look

forward to work on our project after this semester

with all solutions we listed.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly

4
https://github.com/tempra28/nmtrnng

https://github.com/tempra28/nmtrnng


learning to align and translate. arXiv preprint
arXiv:1409.0473.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. arXiv preprint arXiv:1704.04675.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and improving morphological learning in the neu-
ral machine translation decoder. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
volume 1, pages 142–151.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. arXiv preprint arXiv:1505.08075.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate im-
proves neural machine translation. arXiv preprint
arXiv:1702.03525.

Seokhwan Kim, Minwoo Jeong, Jonghoon Lee, and
Gary Geunbae Lee. 2010. A cross-lingual annota-
tion projection approach for relation detection. In
Proceedings of the 23rd International Conference on
Computational Linguistics, pages 564–571. Associ-
ation for Computational Linguistics.

Korean Language Institute. 2012. Sejong treebank.
http://www.sejong.or.kr.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412–1421.

Eunjeong L. Park and Sungzoon Cho. 2014. Konlpy:
Korean natural language processing in python. In
Proceedings of the 26th Annual Conference on Hu-
man Cognitive Language Technology, Chuncheon,
Korea.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
arXiv preprint arXiv:1606.02892.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

A Source Code

https://github.com/q0115643/GCN-RNNG

B Individual Contribution

Hyungrok Kim:

• Developed our idea to be a complete model

we can develop.

• Implemeted our NMT model’s base structure

with attention-based encoder-decoder model.

• Implemented Graph Convolutional Network

Encoder.

• Trained SyntaxNet with appropriate treebank

and built dependency parsed corpus.

• Implement preprocessing and data-loading

into our model.

Jubeen Lee:

• Suggested motivation of our project idea.

• Analyzed original RNNG+NMT source code

written in CPP.

• Converted the original source code into Py-

Torch, with attention mechanism and stackL-

STM.

Donghyun Kim:

• Analyzed NMT+RNNG code from original

author.

• Developed our idea to be an organized model.

• Implemented our evaluation method.

http://www.sejong.or.kr
https://github.com/q0115643/GCN-RNNG

