
Automatic Classification of Poetry by Neural Scansion

Hyungrok Kim, Yu Zhao, and Belay Zelalem
School of Computing, KAIST
Daejeon, Republic of Korea

{q0115643, zhaoyu, zelalem.mihret}@kaist.ac.kr

Abstract—Recent researches has been focusing on large scale
poetry classification by meter. We have found significant problems
in poetry that can be hard to be resolved by rule-based poetry
scansion programs. In this paper, we tackle this problem by
replacing formal poetry scansion programs by neural network
approach, the ”Neural Scansion.” By our machine learning
approach, we built our model to syllabify the words in poems.
Per syllable, we generated corresponding, predicted poetic meter,
and made classifications within the generated poetic meters. With
these experiments, our purpose is establish a new baseline of
automatic poetry neural scansion handling unexpected deviations
from such standard patterns.

I. PROBLEM

As we are in the digital age, huge amount of available data
has attracted the attention of major scholars and has developed
into its own research paradigm. There is no consensus as to
when data are large or complex enough to qualify as the
object of data-intensive research, especially since huge or
massive may mean completely different things in different
fields and disciplines, but Levallois, Steinmetz, and Wouters
advance a relevant and potentially useful definition: data-
intensive research [is] research that requires radical changes in
the discipline involving “new, possibly more standardized and
technology-intensive ways to store, annotate, and share data,”
a concept that therefore “may point toward quite different
research practices and computational tools” [1].

[2] is a project proposal that was focusing on studying to
redefine the scholarly approach to poetry analysis by applying
data-intensive research methods and eventually mathematical
graph theory. Following researches ([3], [4], [5], [6]) study the
features of graphs and find some patterns, conclusions against
the established literary criticism.

Fig. 1. Progress of poetry classification by meters

In a recent research [3], the authors worked on classifying
English poems into metric or non-metric, by scanning and an-
alyzing their phonetic patterns with poetic meters and rhymes,
like in 1. Poem is about poetic meter, line structure, and use of
rhyme. In [3], the authors extracted metrical related features
from raw text, which are the poetic meters. The poetic meters
are stressed or unstressed accent on each syllable, so to extract
the meters from a raw poetry, we need to split the words into
syllables, which is called ‘syllabification.’

Fig. 2. Detailed techniques used in [3]

2 shows the specific progress in [3], with automatic rule-
based poetry scansion program “Scandroid” [7], they extracted
syllables and poetic meters from raw poetry, and after feature
extraction process, the decision tree decides whether the input
poem is metric or non-metric.

From the scansion process of Scandroid [7], we spotted
two significant problems that need to be solved. First in
the syllabification, problems come with poetic Licenses and
unknown words. In poems, awkward words based on poetic
license exist frequently, Rule-based algorithm cannot work
as a perfect syllabification. Second in meter generation, lex-
ical ambiguity is a significant problem. Some words meters
differ depending on whether they are verbs or nouns, for
example word “convict” has different accent structures like
conVICT(verb) or CONvict(noun).

The two problems are not easy to be solved with rule-
based algorithm that scansion programs like [7] have, and
those problem affects the quality of generated meters. So we
came up with new approach by neural network approach to
provide better meter extraction. For syllabification and meter
extraction, we will compare our new approach and the baseline
method from [3] and eventually the effects in classification
phase.

II. RELATED WORK

Computational analyses of small, manually labeled corpora
of poetry have been conducted before, notably by Malcolm

Hayward [8]. In 1991, Hayward published a paper on a
connectionist constraint satisfaction model based on a par-
allel distributed processing model for analyzing the metrical
features of poetry. He was motivated by traditional metrical
analytic methods inability to account for interactions between
all aspects of a poem and their overall effect on prosody during
reading performances.

Hayward divided the integral of activation in the soft
position by the integral of activation in the hard position
to measure metrical regularity in iambic verse. Ratios close
to 0 indicated a more regular iambic verse while ratios that
approached 1 indicated a less regular use of iambic pentameter
(or none at all) [8].

Convinced that this model could be used to uncover individ-
ual poets unique metrical style, in 1996 Hayward published a
follow up paper comparing 10 poets treatment of iambic verse
and was able to fingerprint them and determine their period
of writing [9].

While sophisticated, Haywards approach can not scale as it
relies on hand annotated data. Additionally, Hayward analyzed
only 1000 lines of poetry and it is unknown how well his
model will generalize for different corpora.

More recently, researchers in the digital humanities have
begun working with much larger datasets. [10] from the
Stanford Literary Lab performed data intensive poetry analysis
via the Trans-Historical Literary Project. As of this writing
they have not published a paper, however an abstract of their
work is available from dharchive.org [10] and their source
code is available on Heusers github page [11]. According to
their presentation notes (available on github), their parser was
able to correctly divide words into syllables with an accuracy
of 88%. Still, because the approach by [10] was based on
rule-based algorithms, it should be compared in our results.

In 2017, from [12], there was an neural net approach to
phonetic model of poetry, but it was for generating verses of
poetry, not the classification as our baseline approach from [3],
but since the meter extraction part of our process is like meter
generation, which is generation of phonetic sequence like in
[12], the model they used, should be in trial and compared.

III. SOLUTION

Basic difference of the new approach is that we are applying
the neural network approach instead of the rule-based poetry
scansion program, so we are building and comparing the
Neural Scansion with the scansion program from baseline [3].

There are two tasks that the neural scansion should solve,
first is the syllabification from raw poetry input, and the second
in meter extraction from the syllables that was the output of the
first phase (syllabification). We must extract syllables before
generating meters but explanation of meter generation part will
be first for convenience.

A. Meter Generation

To apply neural net model to meter generation, first we
thought of this as a sequence-to-sequence problem sequence
of syllables to sequence of meters. So we can model it just

like the rhythmic verse generating paper we mentioned [12].
We tried building the encoder-decoder LSTM [13] approaches
[14] but it didnt give us any good performance, especially the
length of sequence were not matching. We thought of it as a
tagging method, because each syllable becomes one meter, we
thought of it as tagging a meter per syllable. And used the state
of the art model in named entity recognition, Bi-LSTM-CRF
model [15].

Fig. 3. Bi-LSTM-CRF model for meter generation

3 is a closer look to our Bi-LSTM-CRF model for meter
generation. Each syllable is encoded into character-level bi-
LSTM and generates syllable vector by concatenating two
outputs. After, sequence of those syllable vectors become
inputs for word-level Bi-LSTM, and into CRF layer, we can
get sequence of corresponding meters.

The original model from [15] uses pre-trained word vectors
to be concatenated with the character-level LSTMs’ outputs,
but since we are using syllables as tokens, there aren’t any
available pre-trained syllable vectors we can use, so we
removed that part.

With this model, there are some variations we could make.
We could include the special characters like question mark
and dot, which can hold information about the meter it has.
And because we use syllable-level model, we lose the original
word structures so we can added word boundary characters to
the syllables.

B. Syllabification

4 is a closer look to our Bi-LSTM-CRF model for syllabifi-
cation. Basically we used the same model as 3. Important thing
was that how we made the syllabification into a tagging task,
since this model 3 was for tagging task. We tokenized each
word into characters-level, and tagged ‘b’ or ‘i’, ‘b’ meaning
beginning of a syllable and ‘i’ for inside a syllable. This way,
we made syllabification into a tagging task.

If you look at 4, the character-level LSTM might not be
useful because the input is just one token of a character,

actually the performance doesnt differ much whether using
character-level LSTM or not.

Fig. 4. Bi-LSTM-CRF model for syllabification

IV. EXPERIMENTS

For our experimental setup, we implemented our neural
scansion and the baseline model [3] from scratch since the
authors didn’t give enough setups or any of their code. First
for the baseline model, we had to prepare the dataset, scansion
program called Scandroid [7], and Feature Extraction process
for the decision tree and the decision tree.

For dataset, we crawled 5840 categorized poems from po-
etryfoundation website1. For scansion program, we found that
Scandroid [7] was not really handy to use, so we found another
similar program called LitLab-poetry [10] from Stanford. like
in 5, with input poem, this program syllabify words and marks
the stressed and unstressed meters, the capital syllables mean
stressed and others are not.

Fig. 5. working example from LitLab-poetry program [10]

For the feature extraction and decision tree they [3] used,
since the authors didnt provide the implementation of those
nor specific details about it, we replaced that part with neural
network classifier which can classify poems as metric or non-
metric with input data of meters. We chose do this because
we are focusing on the effect of the syllable and meter

1http://poetryfoundation.org

extraction model, the classifier didnt matter because we used
same classifier for both approaches.

And for our neural network approach, We needed to imple-
ment two parts, first the syllable extraction, and second the
meter generation.

A. Syllabification

First for syllabification, as we said, We used Character-level
Bi-LSTM-CRF model 4, and for training, we collected some
syllable dictionary from web database called WebCelex [16],
which has 160,595 words with full syllable information. We
found out the poems from poetryfoundations [17] data have
about 34,000 words included in the dictionary and 25,000
as unknown words. So we trained the model with trainset
including known words and 3,000 for devset and testset.

The dimensions for character-level LSTMs were set to 27,
and 128 for word-level LSTMs and both were accompanying
one another LSTM to form bidirectional LSTMs. Stochastic
gradient Descent [18] optimizer was used with learning rate
of 0.005 and dropout layer [19] with dropout rate of 0.5.

B. Meter Generation

Fig. 6. example paragraph from 4B4V dataset [20]

For Meter generation, we used the same model 3, and here
because we needed gold labels syllables and meters in training,
we found this 4B4V dataset [20] with 87 poems, in total of
about 12 hundred lines with all features like in 6, it has all
syllables and meters.

All setup was similar to syllabification, but the dimensions
in character-level bi-LSTMs were set to 31.

C. Metric Classifier

With those 2 phase in our approach, we made a neural
replacement against the rule-based scansion program. After,
we used CNN and RNN classifier for classifying the poems
into metric or non-metric. CNN was used with the model
introduced by Yoon Kim in [21], and RNN was just used
with one simple layer structure of GRU [22].

For convolutional model from [21], the kernel sizes were
set to {2, 3, 4, 5}, dropout rate was set to 0.5, and due to
computational overhead, we only used static word embedding
with learning rate 0.001 and batch size 128.

For GRU model from [22], the hidden dimension was set
to 100, batch size 64 and we used Adam optimizer from [23]
with learning rate of 0.001.

V. RESULTS

Within the results, we made 3 comparisons. First, the
syllabification accuracy per word comparing our neural net-
work model with the Litlab-poetry scansion [10]. Second,
meter generation result on 4B4V data [20], we compared the
syllable-level accuracy, line-level accuracy, and the accuracy
of the line lengths. For final result for poetry classification
on poetryfoundation data [17], we only compared the whole
output accuracy as metric or non-metric.

A. Syllabification

Fig. 7. syllabification accuracy per character-tag (b, i)

Accuracy per character-tag per word-to-syllables
LitLab-poetry - 88.00%
Bi-LSTM-CRF 98.40% 91.90%

TABLE I
COMPARISONS OF ACCURACY RESULTS OF SYLLABIFICATION

7 and I show the accuracy results and comparisons with
baseline program and our neural scansion. The LitLab-poetry’s
syllabification accuracy was given in their presentation notes
(available on github). We have drawn higher accuracy than
the baseline rule-based scansion, which became 91.90% from
88.00%.

B. Meter Generation

Fig. 8. meter extraction accuracy per syllable and per line

Accuracy per syllable per line line length
LitLab-poetry 72.00% 27.01% 81%
Bi-LSTM-CRF 92.08% 62.71% 100%
Bi-LSTM-CRF with (?, !, .) 92.15% 63.80% 100%
Bi-LSTM-CRF with (?, !, .), WB 92.55% 65.25% 100%

TABLE II
COMPARISONS OF ACCURACY RESULTS OF METER GENERATION

8 and II(WB: word-boundaries to bring back the word struc-
tural information) show the accuracy results and comparisons
with baseline program and our neural scansion. Here also, we
can see that our neural scansion approach has got much higher
accuracy than the rule-based scansion program.

C. Final Result for Poetry Classification

Accuracy for CNN RNN
Our Neural Scansion 72% 76%
Scansion Program (LitLab-poetry) 75% 78%

TABLE III
COMPARISONS OF ACCURACY RESULTS OF SYLLABIFICATION

Odd results compared to two previous results, III shows
that our neural scansion approach got slightly lower accuracy
than the baseline model for poem classification to metric or
non-metric.

VI. DISCUSSION

A. Conclusion

Neural Scansion for syllabification was better than baseline
program’s rule-based algorithm or dictionary, since it’s prob-
abilistic, machine learning approach had great ability to learn
the changes of pronunciations of syllables.

Even for Meter Generation, our neural scansion had much
better results with higher accuracy. Especially for accuracy
per line, it had improved score from 27.09% to 65.25%. Also
for line length, 81% of results with LitLab-poetry had wrong
length of output meter sequence, but because we adapted
tagging model to our task, we were able to have 100% accurate
meter sequence lengths. And the accuracy got increased as it
included special characters like ?, !, ., and word boundaries.
This should be because the special characters like dot, question
mark, and exclamation mark have information of accents,
which is directly connected to the meter structure, and for
the word boundaries, it will bring back the word form into
our neural network because by using syllable-level model, we
might lose the word structures.

Fig. 9. structural categories of poems from poetryfoundation.org

The final poetry classification result was similar to the
baseline model and was not higher, this was unexpected
because the previous two experiments had significantly higher
performance, this might be caused by the following reasons,

• The difference between 4B4V and Poetry dataset, because
the 4B4V dataset [20] was very small, only with 87

poems, it would have been hard to train the model to
have metric or non-metric features correctly.

• Better capacity of Decision Tree than CNN/RNN on
classifier, since the structural categories are directly re-
lated to meters and rhyme structures, there will not be
many exceptional cases that could had been handled
better by neural networks, so it would have been messing
the results because of using too simple neural network
approach in the final metric or non-metric classification
task (we used basic CNN [21] or RNN [22] method).

• Ambiguous standard of Metric or Non-Metric, we expect
this reason as the most significant one. The poetry cate-
gorizing is difficult to just say Metric or Non-Metric if
we look at 9, some categories like “Free Verse” should be
non-metric, but there are no simple, general rule to clas-
sify metric and non-metric poems since the categories of
the poetry became diverse with the postmodern literature.
The baseline paper [3] doesn’t have detailed explanations
how they picked which one as metric and which one as
non-metric when they were building their dataset.

B. Future Work

In this paper, we worked on neural network approach of
meter generation and classification of poetry based on poetic
meters. But the actual poetry structural categories are based
on meters and rhymes, so with additional Rhyme Detection
and Poetry structure understandings for all categories, we will
be able to get improve and very precise the metrical analysis
not just by (metric, non-metric), classifying all categories like
in 9.

In our model, we divided the syllabification task and meter
generation task in separate progress, but if we jointly model
the poetic language, meter and rhyme, we might have compact
and effective neural model for analyzing poems.

REFERENCES

[1] C. Levallois, S. Steinmetz, P. Wouters et al., “Sloppy data floods or
precise social science methodologies? dilemmas in the transition to
data-intensive research in sociology and economics,” Virtual Knowledge:
Experimenting in the Humanities and the Social Sciences, pp. 151–182,
2013.

[2] MARGENTO, “The graph poem project,” 2015, http://artsites.uottawa.
ca/margento/en/the-graph-poem/.

[3] C. Tanasescu, B. Paget, and D. Inkpen, “Automatic classification of
poetry by meter and rhyme.” in FLAIRS Conference, 2016, pp. 244–
249.

[4] M. Pramanick, A. Gupta, and P. Mitra, “An lstm-crf based approach
to token-level metaphor detection,” in Proceedings of the Workshop on
Figurative Language Processing, 2018, pp. 67–75.

[5] A. Lou, D. Inkpen, and C. Tanasescu, “Multilabel subject-based classi-
fication of poetry.” in FLAIRS Conference, 2015, pp. 187–192.

[6] V. Kesarwani, D. Inkpen, S. Szpakowicz, and C. Tanasescu, “Metaphor
detection in a poetry corpus,” in Proceedings of the Joint SIGHUM
Workshop on Computational Linguistics for Cultural Heritage, Social
Sciences, Humanities and Literature, 2017, pp. 1–9.

[7] Hartman, C, “Charles hartman programs,” 2004, http://oak.conncoll.edu/
cohar/Programs.htm/.

[8] M. Hayward, “A connectionist model of poetic meter,” Poetics, vol. 20,
no. 4, pp. 303–317, 1991.

[9] ——, “Applications of a connectionist model of poetic meter to problems
in generative metrics,” in Research in Humanities Computing: Selected
Papers from the ALLC/ACH Conference, vol. 4, 1996, pp. 185–92.

[10] M. Algee-Hewitt, R. Heuser, M. Kraxenberger, J. Porter, J. Sensenbaugh,
and J. Tackett, “The stanford literary lab transhistorical poetry project
phase ii: Metrical form,” in Digital Humanities Conference, Lausanne,
Switzerland, 2014.

[11] Heuser, R, “Stanford literary lab github account,” 2015, https://github.
com/quadrismegistus/litlab-poetry.

[12] J. Hopkins and D. Kiela, “Automatically generating rhythmic verse with
neural networks,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
vol. 1, 2017, pp. 168–178.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[15] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[16] R. Baayen, R. Piepenbrock, and L. Gulikers, “Webcelex,” 2001.
[17] K. Goldsmith, “Flarf is dionysus. conceptual writing is apollo. an

introduction to the 21st century’s most controversial poetry movements.”
poetryfoundation. org,” Poetry Foundation, vol. 1, 2009.

[18] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[20] H. F. Tucker, “Poetic data and the news from poems: A for better for
verse memoir,” Victorian Poetry, vol. 49, no. 2, pp. 267–281, 2011.

[21] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[22] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

